Multiple connexins confer distinct regulatory and conductance properties of gap junctions in developing heart.

نویسندگان

  • R D Veenstra
  • H Z Wang
  • E M Westphale
  • E C Beyer
چکیده

Multiple gap junction proteins (connexins) and channels have been identified in developing and adult heart. Functional expression of the three connexins found in chick heart (connexin42, connexin43, and connexin45) by stable transfection of communication-deficient neuro2A (N2A) cells revealed that all three connexin cDNAs are capable of forming physiologically distinct gap junctions that differ in their transjunctional voltage dependence and unitary channel conductances. The transjunctional voltage dependences of connexin45 and connexin42 closely resembled those of 4-day and 18-day embryonic chick heart gap junctions, respectively. The multiple channel conductances between 80 and 240 pS, including the predominant 160 pS channel, observed in embryonic chick heart were also common to connexin42. The expression of multiple gap junction channels with distinct conductance and regulatory properties within a given tissue may account for developmental changes in intercellular communication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple connexins colocalize in canine ventricular myocyte gap junctions.

We have recently shown that adult canine ventricular myocytes express three distinct gap junction channel proteins, connexin40 (Cx40), connexin43 (Cx43), and connexin45 (Cx45). These proteins have unique cytoplasmic domains that likely confer connexin-specific physiological properties. To determine whether the three distinct channel proteins are distributed in identical or different populations...

متن کامل

Cardiac myocytes express multiple gap junction proteins.

Electrical propagation in the normal heart occurs via intercellular transfer of current at gap junctions. Alterations in intercellular coupling in the diseased heart are critical in the pathogenesis of reentrant ventricular arrhythmias. Until recently only a single gap junction protein was known to couple cardiac myocytes. We have now identified and sequenced two additional distinct gap junctio...

متن کامل

Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of vario...

متن کامل

Gap junction channels formed by coexpressed connexin40 and connexin43.

Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verif...

متن کامل

Upregulation of Connexins 30 and 32 Gap Junctions in Rat Hippocampus at Transcription Level by Chronic Central Injection of Lipopolysaccharide

Background: Gap junctions composed of connexins (Cx) are functional in cell defense by propagation of toxic/death molecules to neighboring cells. Hippocampus, one of the brain regions with particular vulnerability to damage, has a wide network of gap junctions. Functional response of astrocytic Cx30 and neuronal Cx32 to hippocampal damage is unknown. Methods: We infused lipopolysaccharide (LPS)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 71 5  شماره 

صفحات  -

تاریخ انتشار 1992